

НОЦ ИКИ РАН

XXII Конференция молодых учёных

"Фундаментальные и прикладные космические исследования"

Секция "Доклады юниоров"

МЕЖОРБИТАЛЬНЫЙ БУКСИР

ВЫСОКОЙ ТЯГОВООРУЖЕННОСТИ НА ЖИДКОСТНОМ РАКЕТНОМ ДВИГАТЕЛЕ

Космическая компания "А-РОКЕТС"

Губанов Давид Анатольевич МОУ СОШ № 39 г. Твери

> Москва 21-23 апреля 2025 года

ПРОБЛЕМАТИКА

Тенденция

Запуски

Орбита

ДУ

Радикальное снижение МГХ и сроков изготовления МКА

Экспоненциальность – линейность | Кластерные пуски | Попутный рейс

Выход на высокие орбиты и отлётные траектории значительно осложнен

Нет возможности разведения МКА по орбитам с разными наклонениями

и эксцентриситетами

МКА не имеют | Буксиры – различного типа

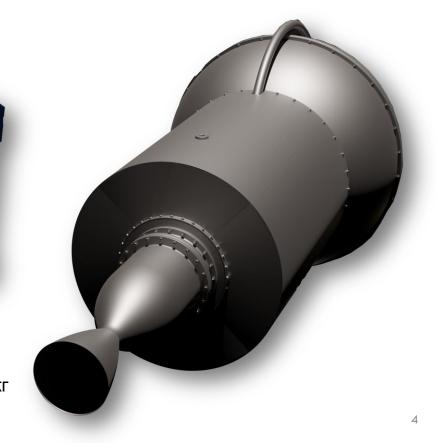
Разработка экономически выгодного межорбитального буксира для МКА

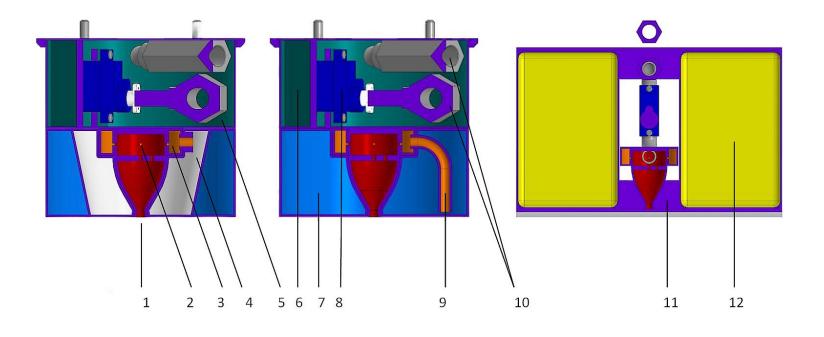
- 1. Отсутствие ЭРД и мощных силовых установок
- 2. Экологически чистые компоненты топлива
- 3. Максимизация ТВР и ускорения

ФУНКЦИОНАЛ

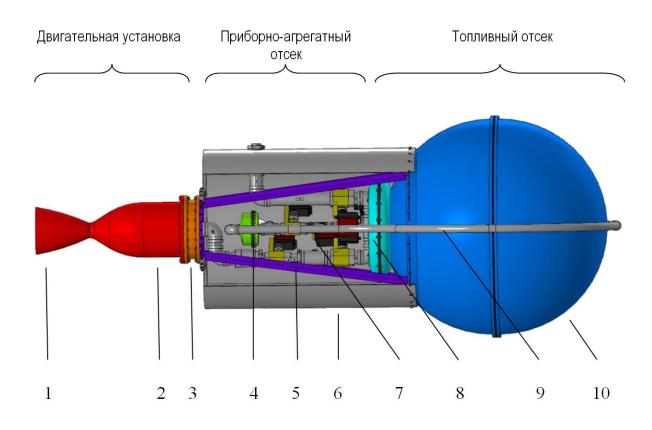
- Поддерживание и корректировка орбиты МКА в малых пределах изменения наклонения и эксцентриситета.
- Компенсация орбитальных пертурбаций.
- Свод МКА с орбиты по истечении активного срока существования.
- Свод космического мусора.
- Реализация высокоэнергетических переходов для перевода МКА на целевые орбиты или отлётные траектории [модификация изделия]

МЕЖОРБИТАЛЬНЫЙ БУКСИР


РАБОЧИЕ ВЕРСИИ В ЗАВИСИМОСТИ ОТ ФОРМ-ФАКТОРА ИЗДЕЛИЯ


Средний, МСТ 2.4 кг

Большой, МСТ 425.7 кг


КОНСТРУКТОРСКОЕ РЕШЕНИЕ 1

- 1 Сопловой блок
- 2 Полость катализаторного пакета
- **3** Полость ввода монотоплива, H_2O_2 70%
- 4 Мембрана разделительная
- 5 Бак газа наддува, Не
- 6 Отсек электронных компонентов
- 7 Топливный бак основной
- 8 Сервопривод
- 9 Подвод монотоплива
- 10 Клапаны
- 11 Силовой каркас
- 12 Топливные баки дополнительные, 2 шт.

КОНСТРУКТОРСКОЕ РЕШЕНИЕ 2

- 1 Сопловой блок
- 2 Полость катализаторного пакета
- 3 Полость ввода монотоплива
- 4 Жидкостный аккумулятор давления
- 5 Силовой каркас
- 6 Обечайки (защитные)
- 7 ПГС и электронные компоненты системы
- **8** Торовый бак системы наддува, H_2O_2 70%
- 9 Трубопровод наддува
- **10** Основной топливный бак, H_2O_2 90%

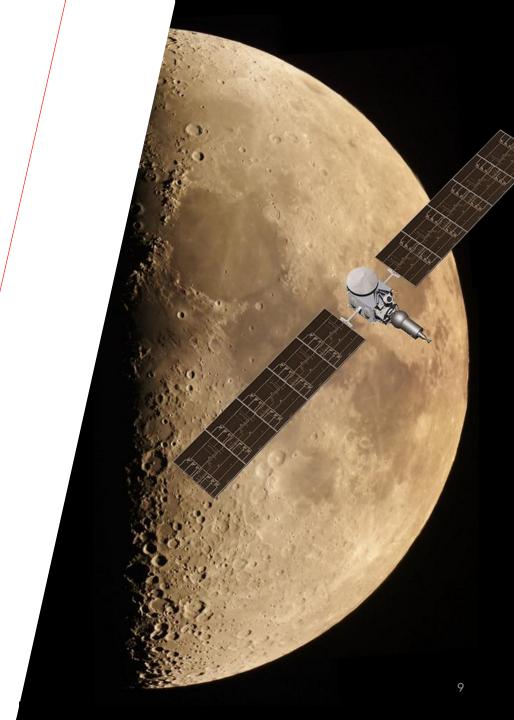
ЖРД

СОПЛОВОЙ БЛОК	КАТАЛИЗАТОРНЫЙ ПАКЕТ	ПОЛОСТЬ ВВОДА МОНОТОПЛИВА	
Параболический профиль	Полость : обечайка + 2 днища	Полость 1 обечайка + 2 днища	
Радиационное охлаждение	Крепление сварное	Полость 2 обечайка + 2 днища штуцер подачи H2O2 фланец для соединения с катализаторным пакетом	
Отсутствие каналов рубашки регенеративного охлаждения	Катализатор пористый КМnO ₄ / NαFeO ₂		
Критическое сечение ZrO ₂	Форсунки струйные	Форсунки струйные	

Расположение ДУ внутри бака монотоплива

|для малого и доукомплектованной версии буксира|

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ	БУКСИР МАЛЫЙ	БУКСИР БОЛЬШОЙ МОЩНОЙСТИ	
Тяга	5-10 H	3548 H	
Топливо	H2O2 70-80%	H2O2 90%	
Метод разложения	Каталитический	Каталитический	
Подача компонентов	Вытеснительная	Вытеснительная	
Масса топлива, кг	0.2	180.4	
Масса сухая, кг	0.4	93.3	
Масса ПН, кг	5 –10	100-200	
Удельный импульс, м/с	850 – 1520	1503	
Скорость характеристическая без ПН, м/с	344.6 – 616.3	1596	
Тип ДУ	ЖРД монотопливный	ЖРД монотопливный	
Время работы, с	60.8 – 33.9	76.4	
Габариты, мм	80 X 80	1875 X 720 X 720	
Материал изготовления	АМГ 6 12x18н10 т Титан	АМГ 6 12x18н10 т Титан	
Метод изготовления	Токарная обработка TIG – сварка 3D - печать	Токарная обработка TIG – сварка 3D – печать	
Доукомплектация	Внешняя ПГС Топливные баки – 2 шт.	-	


РАСЧЕТНАЯ ЧАСТЬ

$$\begin{aligned} v_{q} &= \sqrt{GM_{\oplus}\left(\frac{2}{r_{q}} - \frac{1}{a}\right)} = \sqrt{GM_{\oplus}\left(\frac{2}{r_{q}} - \frac{1}{\left(\frac{r_{q} + r_{a}}{2}\right)}\right)} = \Delta V + v_{\text{KP}} \\ &= \Delta V + \sqrt{\frac{GM}{(R_{\oplus} + h_{q})}} \end{aligned}$$

ПРИМЕР Выражение для скорости буксира высокой тяговооруженности с ПН 150 кг

в перигее после совершения орбитального маневра | e = 0 | высота орбиты -400 км

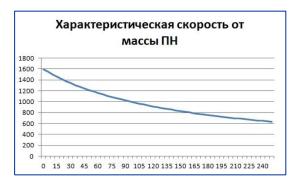
$$v_q = \Delta V + \sqrt{\frac{6.67 \cdot 10^{-11} \cdot 5.9722 \cdot 10^{24}}{(6378100 + 400000)}} = 828.466 + 7666.128 = 8494.594 \frac{\text{M}}{\text{c}}$$
$$=> h_a = 4399.445 \text{ km}; a = 8777.822 \text{ km}; e = 0.2278$$

РАСЧЕТНАЯ ЧАСТЬ

$$I = \sqrt{\frac{TR}{M} \cdot \frac{2k}{k-1} \cdot \left(1 - \left(\frac{p_e}{p_c}\right)^{k-1/k}\right) + \frac{S_e}{\dot{m}}(p_e - p_0)}$$
$$= \sqrt{\frac{TR}{M} \cdot \frac{2k}{k-1} \cdot \left(1 - \left(\frac{p_e}{p_c}\right)^{k-1/k}\right) + \frac{S_e}{\dot{m}}p_e}$$

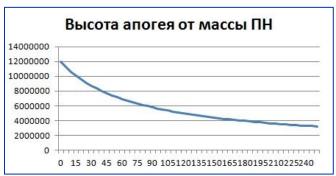
ПРИМЕР Выражение для расчета удельного импульса, I vac.

$$\bar{S} = \frac{S_e}{S_t} = \frac{\left(\frac{2}{k+1}\right)^{\frac{1}{k-1}} \sqrt{\frac{k-1}{k+1}}}{\left(\frac{p_e}{p_c}\right)^{\frac{1}{k}} \sqrt{1 - \left(\frac{p_e}{p_c}\right)^{\frac{k-1}{k}}}} = \frac{\left(\frac{2}{k+1}\right)^{\frac{1}{k-1}} \sqrt{\frac{k-1}{k+1}}}{\left(\frac{1}{\varepsilon}\right)^{\frac{1}{k}} \sqrt{1 - \left(\frac{1}{\varepsilon}\right)^{\frac{k-1}{k}}}}$$

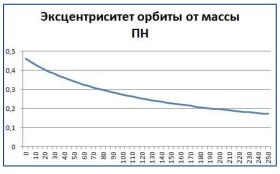

ПРИМЕР

Выражение, связывающее геометрическую степень расширения сопла

с газодинамической.




ПРОЕКТНО-БАЛЛИСТИЧЕСКИЙ АНАЛИЗ



АНАЛОГИ СИСТЕМЫ

ЭРД VERA CUBSAT – МИФИ

БУКСИР "МАТРОС" – МГТУ им. М. Э. Баумана – В рамках РОСС

Победитель акселератора РКК «Энергия»

ПАРом

Электротермическая двигательная установка

ООО «СИА» - Академтехнопарк, Новосибирск

	A-BOX - MINI	ПАРОМ, МДУ 200	A-BOX - MAX	ПАРОМ, МДУ 1000
Разработчик	А-РОКЕТС, Москва	СИА, Новосибирск	А-РОКЕТС, Москва	СИА, Новосибирск.
Вид изделия	Межорбитальный буксир	Электротермическая ДУ	Межорбитальный буксир	Электротермическая ДУ
Тип ДУ	ЖРД, монотопливный	ЭРД, монотопливный	ЖРД, монотопливный	ЭРД, монотопливный
Тяга, Н	5 –10 H	10 мН	3548,464	0,000006
Вид топлива	H2O2, 70-80%	Н2О, дистиллированная	H2O2, 90%	Н2О, дистиллированная
Разложение	Каталитическое		Каталитическое	
Масса топлива, кг	0.2	0.13	180.4	0.7
Масса сухая, кг	0.4	0.41	93.3	1.15
Масса ПН, кг	5 –10		100 - 200	100
Удельный импульс, м/с	850 – 1520	1 <i>55</i> 9. <i>7</i>	1503, 3	1687.3
Суммарный импульс, Нс	170 – 304	200	271173,6	1000
Скорость характеристическая , м/с	344.6 – 616.3	429.5	1596	802.9
Габариты, мм	80 X 80		1875 X 720 X 720 208 X 102 X 120	
Многократное включение	Нет Присутствует			
Стадия разработки	Макетирование	ОРБИТА	Макетирование	Лабораторные тесты

Российская частная космическая компания

Фундаментальные научные исследования Производство летательных аппаратов и соответствующего оборудования

ГИЛЬДИЯ «РУБЕЖИ НАУКИ»

Проект принят к реализации

Технологическое направление «Ближний горизонт» 2025-2035

• Околоземная орбита и Луна

Основатель Рубежей Основатель Motorica Инвестор CosmoRobotics

A-POKETC

- Суборбитальная геофизическая РН «Середа»
 технологический форсайт-проект по созданию многоразовой космической системы запуска МКА и многократного вывода за линию Кармана ПН < 30 кг
- Межорбитальный буксир
- ЖРД МТ ЮГ-60
- ЖРД CT CK-150
- **ЭРД (дуговой) плазменный двигатель** Проект реализуется совместно с **NASER**

ЮРИЙ ГАГАРИН - 60

СОПЛОВОЙ БЛОК	КАМЕРА СГОРАНИЯ	ФОРСУНОЧНАЯ ГОЛОВКА
Параболический профиль	Геометрия цилиндрическая Огневое днище	Коллектор впрыска горючего TC-1
Радиационное охлаждение	Форсунки струйные [пересечение струй]	Полость ввода окислителя, О2
Отсутствие каналов рубашки регенеративного охлаждения Критическое сечение ZrO ₂	Гидравлические тесты – 4 Огневые тесты – 1 Стадия – повторные тесты	

Маршевый ДУ / РСУ для малых суборбитальных и орбитальных носителей, малых реактивных ЛА

ОБ АВТОРЕ

Автор патента на изобретение № 2801019 от 01.08.2023 г.

Схема работы жидкостного ракетного двигателя закрытого цикла с дожиганием восстановительного и окислительного газов и ЖРД

Призёр I Всероссийского конкурса ВОИР «Юный изобретатель года – 2023» | **III КМУ** Член ВОИР с 2024 года Парк "СИРИУС"

