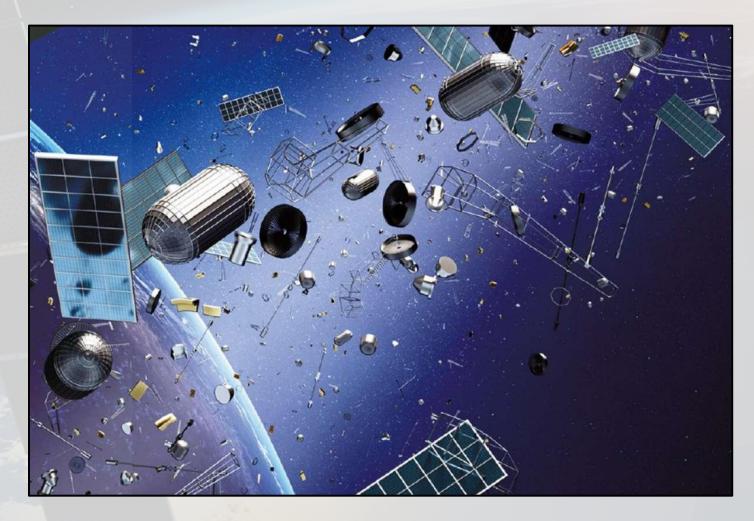


Совершенствование стойкости прецизионных конструкций космического аппарата к ударам космического мусора и микрометеороидов за счёт внедрения композиционных материалов

Докладчик: Халтурина Ольга Дмитриевна

Организация: МГТУ им. Баумана, факультет Специальное машиностроение

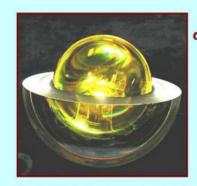
Курс: второй, магистратура


Научный руководитель: Думанский Александр Митрофанович

Цели и задачи

- ➤ обзорно-аналитическое исследование характеристик околоземного космического пространства на предмет метеорно-техногенных факторов, методов диагностики их распределения, риска столкновения с действующими КА и существующих способов защиты;
- симуляция соударения ударника из сплава АМг6, имитирующего космический мусор с мишенью из полифениленсульфида (ПФС);
- ▶ сформулированы рекомендации по улучшению прочностных характеристик материала СЧ КА, его стойкости к внешним высокоскоростным воздействиям при обеспечении оптимальной массовой и прочностной эффективности.

Космический мусор - искусственные объекты, являющиеся опасным фактором воздействия на функционирующие космические аппараты.


- √ 6000 запусков;
- ✓ 20000 единиц ПН;
- ✓ единиц КМ;

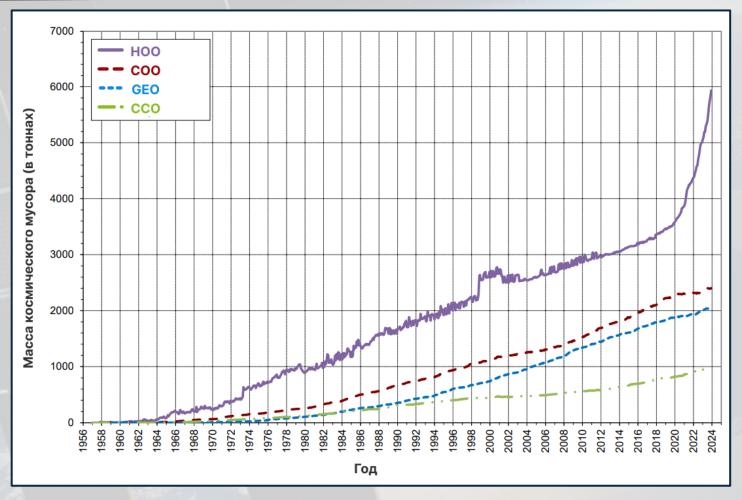
(* Nasa Orbital Debris Program Ofice)

метрологический спутник «Блиц» (шар диаметром 17 см и массой 7,8 кг) разрушен при столкновении с микрочастицей массой $\sim 0,035$ г размером ~ 3 мм при относительной скорости столкновения $\sim 12,3$ км/с

американский коммуникационный спутник Telecom-1A был выведен из строя микрометеороидом

dissembled

Ready for testing



к 1995 г. после 70 полётов шаттла было заменено 60 иллюминаторов из-за повреждений от ударов КМ

Сквозное отверстие в радиаторной панели шаттла «Индевор», образовавшееся при столкновении с фрагментом космического мусора.

Распределение космического мусора в околоземном пространстве

- 1) LMRO запуски KA;
- 2) EXPL последствия взрывов объектов на орбите;
- 3) PAFL естественный износ поверхностей;
- 4) SRMS частицы, образовавшиеся в результате работы твёрдотопливных двигателей;
- 5) MTBG метеориты;
- 6) EJEC последствия ударов частиц КМ о поверхность КА;
- 7) CLOUD микрочастицы КМ;
- 8) MLI разрушение многослойной изоляции;

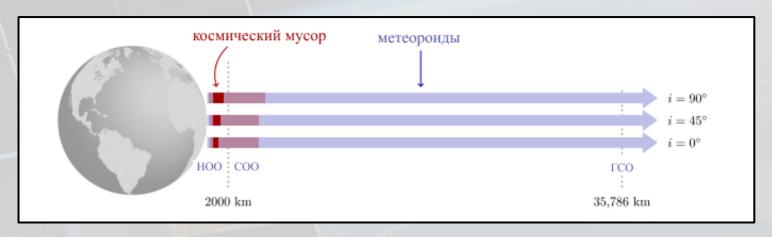
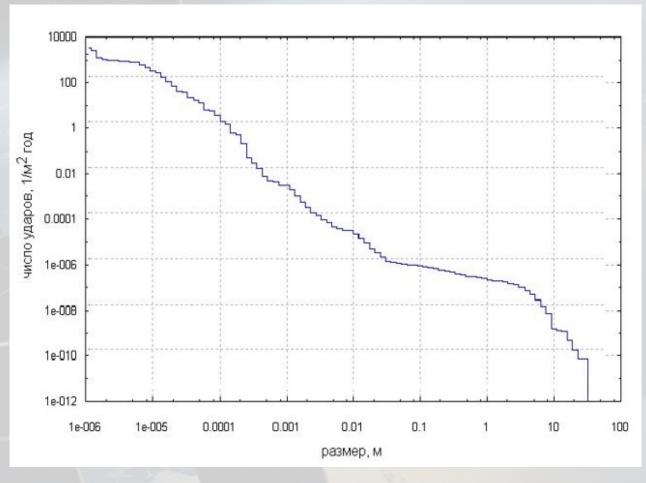
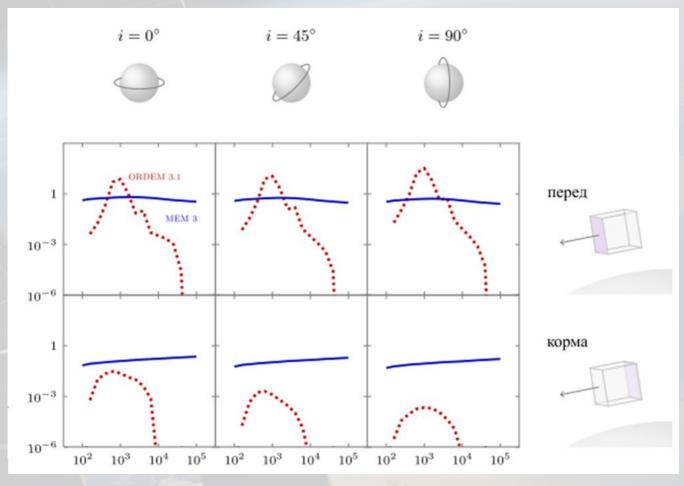


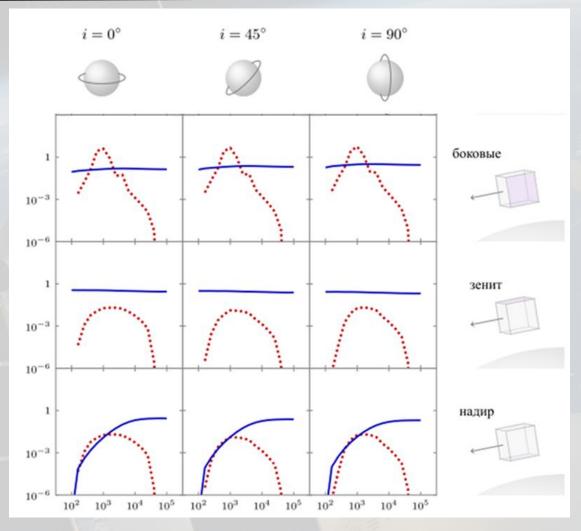
График зависимости плотности распределения космического мусора космического согласно модели MASTER

70% объектов на НОО и 30 % на ССО и ГЕО На высотах выше 600 км регистрация МТТ менее 1 мм затруднена



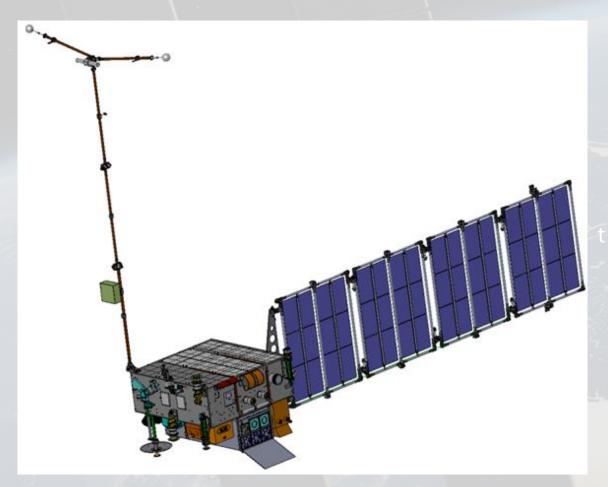

Концентрация МТТ разных типов в зависимости от орбиты

Размер, см	0,1	0,2	0,5	1	5	10	20
$N_{ m cp}$	220	325	5,2	0,854	0,123	0,052	0,038

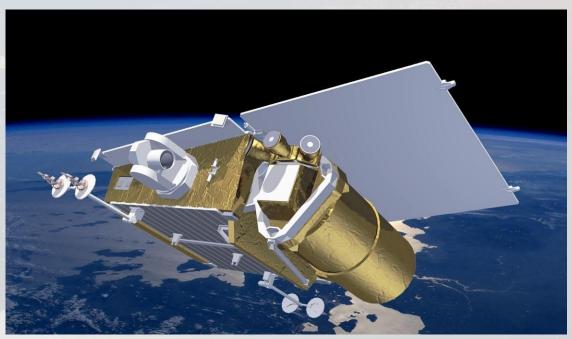

Среднее число столкновений N_{cp} с частицами МТТ разных размеров

Зависимость частоты удара от размера частицы. Данные модели MASTER

Графики соударения спутника различными ударниками: синим – метеороидом, красным – частицами космического мусора


Графики соударения спутника различными ударниками: синим – метеороидом, красным – частицами космического мусора

Наиболее типичный для космической деятельности ущерб от КМ — повреждение чувствительных поверхностей выносных элементов и бортовых приборов:


- > телескопы,
- > солнечные панели,
- > уголковые отражатели,
- > датчики излучений,
- > детекторы,

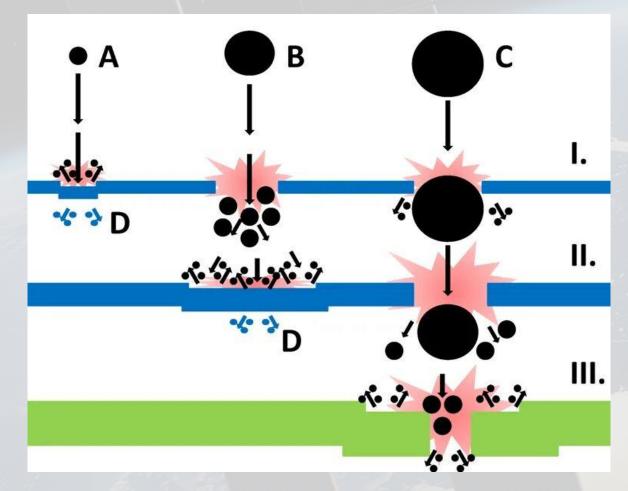
- > штанги,
- > кронштейны,
- > выдвижные элементы,



КА «Беркут-ВР»

Блок механический системы наведения антенн

Линейный электромеханический механизм для раскрытия
трансформируемых рефлекторов зонтичного типа.


Назначение	Раскрытие рефлектора из
	транспортировочного положения в рабочее и
	его фиксации.
Время выдвижения	30
мачты, мин	
Развиваемое	2500
усилие, Н	
Диапазон рабочих	от -40 до +50
температур, °С	
Ресурс, циклов	50
Габаритные	252 x 252 x 4100
размеры, мм	
SMacca, кг	12

Механизм выдвижения мачты

KA «Stardust», AMC для исследования кометы Вильда

Результат наземных испытаний щита Уиппла AMC «Jiotto»

Преимущества SPH-метода

- > применяется в обработке результатов вычислений динамики сложных поверхностей;
- ▶ исследуемая среда принимается за конечное множество частиц, обладающих внутренней энергией, массой, плотностью, давлением, положением в пространстве и скоростью, эффективен при вычислении механики жидкостей и газов, при моделировании взаимодействий объектов, взрывов, столкновений, задач удара в сплошной среде.

Используется совместно с сеточным методом конечных элементов, тем самым компенсируя недостатки обоих методов, сохраняя результат, максимально приближенный к достоверному.

Например, на модель мишени накладывается конечно-элементная сетка, а ударник и сам процесс соударения моделируются при помощи SPH.

При выбора модели расчёта важно учесть:

- Тип нагружения;
- Температурный режим;
- Требуемая детализация описания поведения материала

Полифениленсульфид

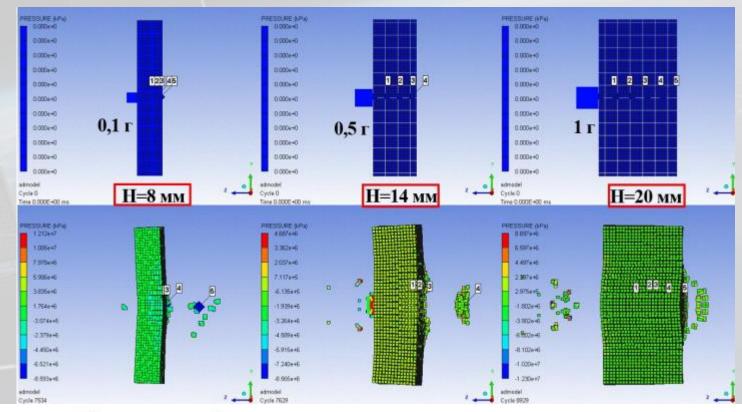
- Подходит для изготовления полых изделий, работающих под давлением;
- > Крайне высокая жесткость и твердость;
- > Очень высокая химстойкость;
- > Великолепная стойкость к растворителям;
- > Очень хорошие свойства электроизоляции;
- > Стойкость к гидролизу;
- > Стойкость к радиационным излучениям;

Температура плавления: 285-295°

187_Semi-Analytical Model for Polymers – для пластины из ПФС

001_Elastic

– для ударника из сплава АМг6


Физико-механические свойства	Полифениленсульфид, PPS
р, Плотность, кг/м3	1380
Ех, Модуль упругости вдоль оси X, ГПа	45
Еч, Модуль упругости вдоль оси Y, ГПа	45
Еz, Модуль упругости вдоль оси Z, ГПа	180
<i>Gxy</i> , Модуль сдвига в плоскости XY, ГПа	8,34
Gyz, Модуль сдвига в плоскости YZ, ГПа	12,02
Gxz, Модуль сдвига в плоскости XZ, ГПа	12,02

Физико-механические свойства	Полифениленсульфид, PPS
μ ₁ , Коэффициент Пуассона в плоскости ХҮ	0,345
μ2, Коэффициент Пуассона в плоскости YZ	0,35
μ3, Коэффициент Пуассона в плоскости XZ	0,35
εх, Максимальные деформации вдоль оси X	0,1
εγ, Максимальные деформации вдоль оси Υ	0,024
εz, Максимальные деформации вдоль оси Z	0,06

Физико-механические свойства	Алюминий AL-2024-T4
ρ , Плотность, кг/м ³	2785
Е, Модуль упругости, ГПа	73.1
G, Модуль сдвига, ГПа	28.3
σ^+ , Предел прочности при растяжении, МПа	495
σ^- , Предел прочности при сжатии, МПа	164
v, Коэффициент Пуассона	0,33

187_Semi-Analytical Model for Polymers – для пластины из ПФС 001_Elastic – для ударника из сплава АМг6

Результаты моделирования

Скорости деформирования и соответствующие скорости удара

v (км/c)	10-7	4.10-3	7	7·10 ³	8.103	9.103	1.104	1,1.104
έ (1/c)	10-4	0,8	1200	1,2.106	1,4.106	1,6.106	1,9.106	2,2.107

Выводы

- ▶Материал полифенилсульфид продемонстрировал свои высокие прочностные свойства и применимость в конструкции СЧ КА в качестве альтернативы традиционным сплавам алюминия и стали;
- ▶ Выполненные расчёты могут быть использованы при проектировании элементов конструкций выносных и прецизионных конструкций, уязвимых к воздействиям статических, динамических и ударных нагрузок;
- >С помощью численного моделирования получены зависимости скорости деформирования образца из полифениленсульфида от массы и скорости алюминиевого ударника;

