Обзор работ в области картографирования типов землепользования территории России по данным дистанционного зондирования Земли

авторы: Мятлев А.А., Колобахин М.Ю., МГУ имени М.В.Ломоносова, 2025

науч. рук.: Кашницкий А.В., ИКИ РАН

Введение

Ландшафтные карты играют ключевую роль в управлении природными ресурсами и минимизации антропогенного воздействия на экосистемы. Они отображают естественные и антропогенные процессы на поверхности Земли.

Современные технологии, особенно методы дистанционного зондирования Земли, позволяют создавать детализированные карты на глобальном уровне с высоким пространственным разрешением. За последние 35 лет точность картографической обработки значительно возросла — с 60% до 90%, что улучшает качество в том числе ландшафтных карт.

Актуальность

Результаты исследования необходимы для оценки площадей ежегодных преобразований между категориями землепользования, что важно для расчёта выбросов и поглощений парниковых газов в секторе землепользования и лесного хозяйства. Эти оценки нужны для выполнения положений Парижского соглашения об изменении климата, принятого Россией.

Исследование позволит создать более точные карты категорий землепользования, что уточнит информацию о выбросах и поглощениях парниковых газов. Методы и результаты картографирования также могут быть полезны в государственном управлении и планировании.

Количество классов

- Лесные земли
- Возделываемые земли
- Пастбища
- Водно-болотные угодья
- Поселения
- Прочие земли

Критерии обзора

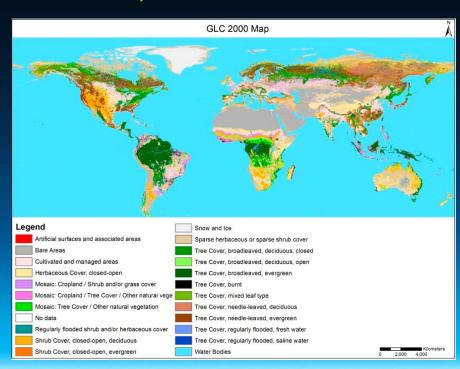
- наличие подходящих классов
- доступность картографических продуктов
- глобальный или региональный охват, соизмеримый России и со схожими классами ландшафтного покрова

Обзор работ

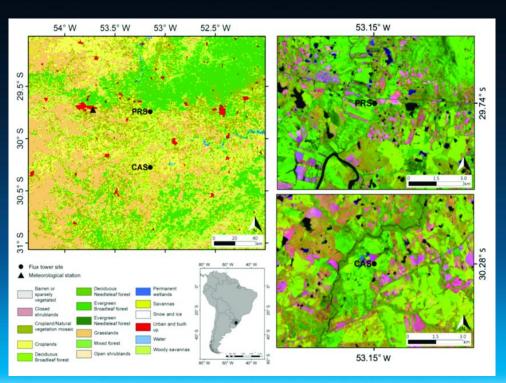
Данные низкого и среднего пространственного разрешения (100+ м)

DISCover

International Geosphere-Biosphere Programme, 1997

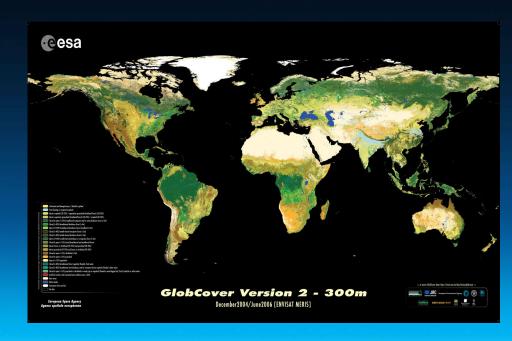

- Разрешение: 1 км; средняя точность: 67%
- Карта составлена на основе спутниковых данных с апреля 1992 г. по апрель 1993 г.
- Использовались данные с датчиков NOAA-AVHRR для классификации в 17 классах
- DISCover стал первым глобальным продуктом такого типа с документированной статистической проверкой точности

Global Land Cover 2000


Joint Research Centre (European Commission), 2005

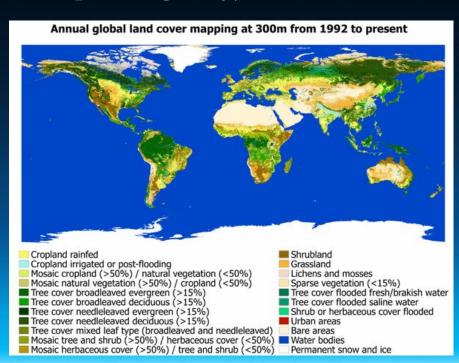
- Разрешение: 1 км; средняя точность: 69%
- Разрабатывался в рамках работ по глобальному картографированию всех континентов
- Обработка данных осуществлялась по данным с датчиков SPOT4-VEGETATION за 2000 г.
- Представлено 21 классами (и подклассами в зависимости от региона)

Global MODIS Land Cover Boston University (the USA), 2010


- Разрешение: 500 м; средняя точность: 75%
- 13 различных наборов данных и классификация по 6 схемам: IGBP, UMD, LAI, BGC, PFT, LCCS
- Ежегодные свежие данные с 2001 г.

GlobCover

European Space Agency, 2008


- Разрешение: 300 м; средняя точность: 67%
- Данные Envisat-MERIS
- Обусловлена низкой плотностью данных и ограничениями
- 22 класса по системе Land Cover Classification System (LCCS)

Global Land Cover

Climate Change Initiative (European Space Agency), 2010

- Разрешение: 300 м; средняя точность: 71%
- Данные спутников MERIS, AVHRR, PROBA-V, Sentinel
- 22 класса по системе LCCS
- Ежегодно обновляется с 1992 г.

Карты ИКИ РАН (2016)

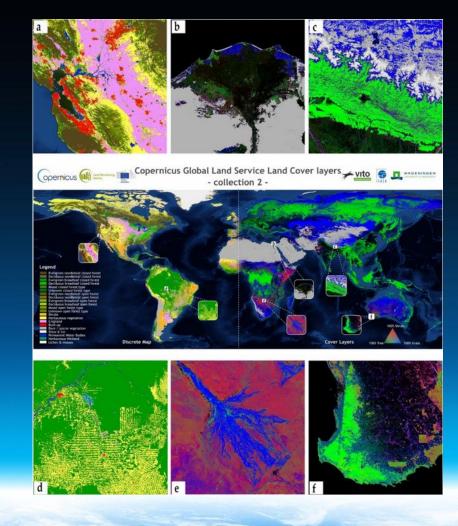
- Разрешение: 230 м
- Данные MODIS Terra/Aqua
- 23 класса
- Локально-адаптивная классификация на основе метода случайных лесов
- Ежегодно обновляется
- Благодаря данному продукту были проведены работы по оценке запаса древесины, динамике лесного покрова и др.

CORINE Land Cover

Coordination of Information on the Environment

(European Commission), 1990

Общеевропейская гармонизированная база данных о растительном покрове

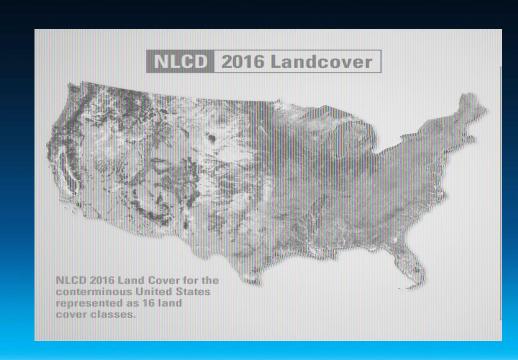

- Разрешение: 100 м
- 44 класса растительного покрова
- Обновление: каждые 6 лет
- На основе различных спутниковых снимков и экспертных знаний научных сообществ стран Европы

Global Land Cover Layers Flemish Institute for Technological

Flemish Institute for Technological Research, Copernicus Programme, 2015

- Глобальный растительный покров на основе данных PROBA-V с разрешением 100 м
- Ежегодно обновляется
- 23 класса, методы: контролируемая классификация, случайный лес
- Слой с изменениями в растительном покрове в разные годы / Дробное покрытие функциональных типов растений

Название	Год издания	Система ДЗЗ	ПР, м	Территория	Временной период	Обновл. (период.)	Кол-во классов	Модель	Точность, %
CORINE Land Cover	1990	Sentinel-1, Sentinel-2, Landsat-8 (в прошлом использовались Landsat-5,7, SPOT-4,5, IRS P6, RapidEye)	100	Европа	1986-2018	6 лет	44	Computer Assisted Photointerpretation (CAPI)	85
IGBP-DISCover	1997	NOAA-AVHRR	1000	Глобальная	1992-1993	12	17	Unsupervised Classification	67
GLC2000	2003	SPOT-VEGETATION	1000	Глобальная	2000	-	21	Supervised and Unsupervised Classifications	69
GlobCover	2008	Envisat-MERIS	300	Глобальная	2004-2009	-	22	Spectro-Temporal Classification	67
CCI Land Cover	2010	MERIS, AVHRR, PROBA-V, Sentinel-2,3	300	Глобальная	1992-2020	1 год	22	Spectro-Temporal Classifications	71
MODIS Land Cover	2010	MODIS (Terra, Aqua)	500	Глобальная	2001-2022	1 год	9-17	Decision Tree	75
CGLS-LC100	2015	PROBA-V	100	Глобальная	2015-2019		23	Random Forest	80
Карты ИКИ РА <mark>Н</mark>	2016	MODIS (Terra, Aqua)	230	Северная Евразия	2001-2023	1 год	23	LAGMA	?


Обзор работ

Данные высокого пространственного разрешения (30 м)

National Land Cover Database

U.S. Geological Survey, 2001

- Данные о растительном покрове США, основанные на Landsat (разрешение 30 м), начиная с 1992 года и доступные в свободном доступе
- 16-20 классов растительного покрова по согласованной методологии США
- Обновляются раз в пару лет
- Используется методы контролируемой классификации и "деревья решений"

Cropland Data Layers

United States Department of Agriculture, National Agricultural Statistics Service, 2008

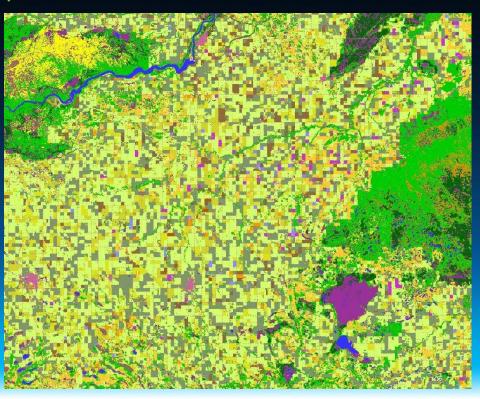
- Ежегодная карта пахотных земель США, начиная с 2008 года
- Разрешение 30 м на основе Landsat, в свободном доступе
- Подробные классы сельскохозяйственных культур (более 100 классов), высокая точность (81%)
- Контролируемая классификация и алгоритмы машинного обучения (Decision Tree, Random Forest)

Landscape Change Monitoring System

United States Forest Service (U.S. Department of Agriculture), 2012

 Сервис по отслеживанию изменений и беспорядков лесов США

- Спутниковые данные: Landsat и Sentinel, начиная с 1985 года


Land Cover

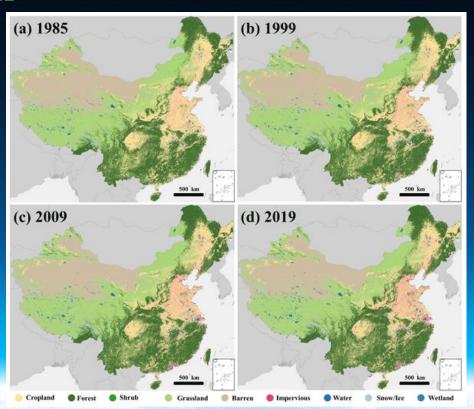
Land Use

Annual Crop Inventory

Agriculture and Agri-Food Canada, 2009

- Ежегодные карты сельскохозяйственных культур для южных регионов Канады с разрешением 30 м
- В разные времена использовались различные данные спутников. В последней версии: Landsat-8,9, Sentinel-2, RADARSAT
- 73 класса сельскохозяйственных культур и растительного покрова, которые обновляются ежегодно
- Классификация Decision Tree; точность 85%

China Land Cover Dataset Wuhan University (China), 2021


- Разрешение: 30 м

- Средняя точность: 79%

- 9 классов, специализированные для территории Китая

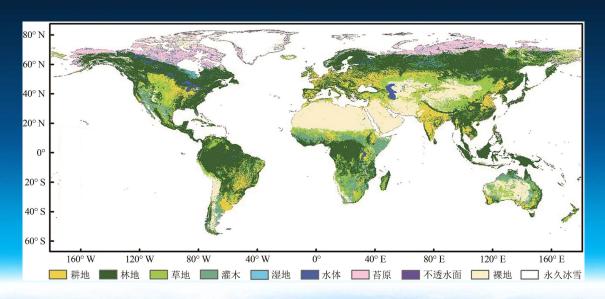
- Данные: Landsat

- Модель обработки: Random Forest

GlobeLand30

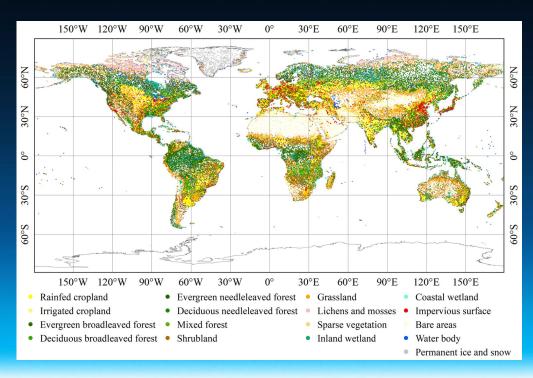
National Geomatics Center of China, 2015

- Пространственное разрешение: 30 м, временной период: 2000-2010-2020 годы, глобальный охват
- Данные снимков Landsat (TM, ETM+, OLI) и Huanjing 1

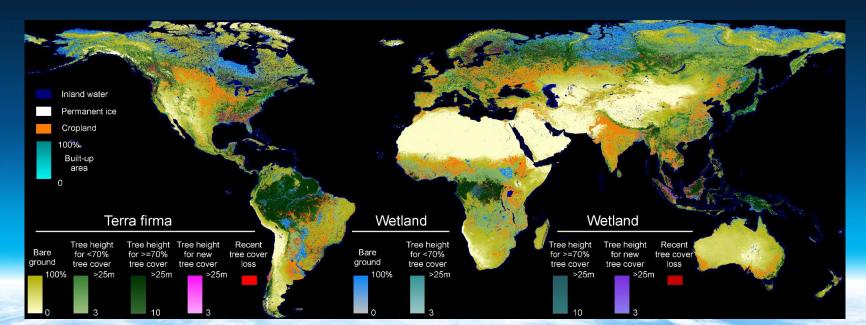

- 10 типов растительного покрова
- Классификация на основе пикселей и объектов, основанная на знаниях (РОК)
- Точность: 80%

Annual Global Land Cover

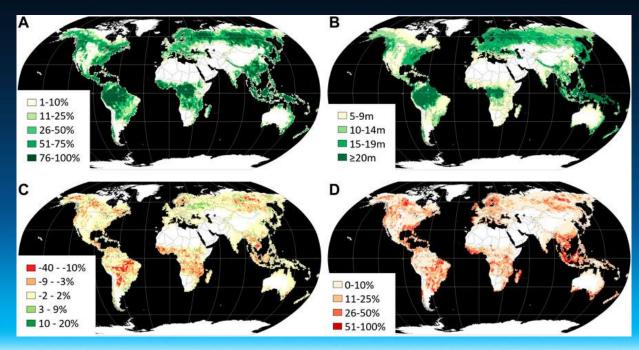
IGSNRR (Chinese Academy of Sciences), 2021


- Ежегодные глобальные карты растительного покрова за 2000-2015 гг., фиксация межгодовой динамики растительного покрова
- Разрешение: 30 м
- 10 основных классов
- Включает "уровень достоверности" для каждого пикселя

GLC_FCS30D


Nanjing University (China), 2023

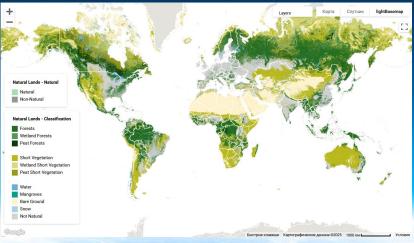
- Разрешение: 30 м; средняя точность: 81% для базовой классификации и 73% для LCCS;
- 35 классов;
- динамическая, т.е. позволяет анализировать изменения за период с 1985 по 2022 год
- до 2000 года обновлялась раз в 5 лет, после ежегодно


Global Land Cover and Land Use Global Land Analysis and Discovery (UMD GLAD, the USA), 2022

- Разрешение: 30 м; средняя точность: 78%; 19 классов; данные за 2019 г.
- Разработана для глобального анализа землепользования, а также охраны природы (Сыграла ключевую роль в сокращении вырубки лесов бассейна Амазонки!)

Global Land Cover and Land Use Change Global Land Analysis and Discovery (UMD GLAD, the USA), 2022

- Выявление и характеристика динамики лесов, пахотных земель, застроенных земель, водных ресурсов, многолетнего снега и льда
- Использовались регрессионные модели, "деревья принятия решений", свёрточные нейронные сети

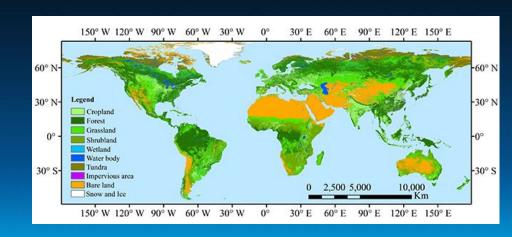

Площадь, структура и динамика лесов

SBTN Natural Lands Map

Land & Carbon Lab at the World Resources Institute, World Wildlife Fund US, Systemiq, and Science Based Targets Network, 2024

- Карты важнейших природных территорий, выпущенные в 2024 году по композитам Landsat и Sentinel с помощью серий оверлеев и заранее принятых правил принятия решений
- Поддерживает научно обоснованные цели в области охраны природы, определяет районы с высоким уровнем биоразнообразия и экосистемных услуг, фокусируется на практических выводах о сохранении
- Точность: 91%

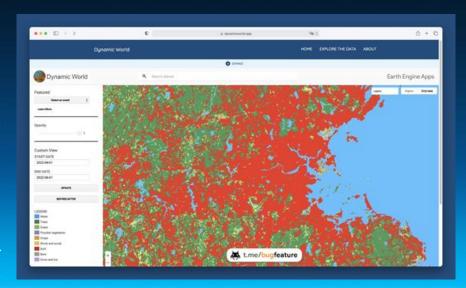
Название	Год издания	Система ДЗЗ	ПР, м	Территория	Временной период	Обновл. (период.)	Кол-во классов	Модель	Точность, %
USGS NLCD	2001	Landsat-4,5,7,8	30	США	1992-2021	2-3 года	2019 - 20 2021 - 16	Decision Tree	91
USDA NASS CDL	2008	Landsat-8,9, Sentine1-2	30	США	1997-2024	1 год	133	Decision Tree (c 2024 r Random Forest)	81
AAFC Annual Crop Inventory	2009	Landsat-8,9, Sentinel-2, RCM (в прошлом использовались AWiFS, DMC, Gaofen-1, Landsat-5, SPOT, RADARSAT-2)	30	Канада	2009-2023	1 год	73	Decision Tree	85
USFS LCMS	2012	Landsat-4,5,7,8,9, Sentine1-2	30	США	1985-2023	1 год	LC - 14, LU - 6	Random Forest, Ensemble of CART Models	79
GlobeLand30 (GLC30)	2015	Landsat-4,5,7, Huanjing 1	30	Глобальная	2000-2020	10 лет	10	Pixel-Object- Knowledge (POK)- based Approach	80
CLCD	2021	Landsat-5,7,8	30	Китай	1990-2019		9	Random Forest	79
AGLC-2000- 2015	2021	Landsat-5,7,8	30	Глобальная	2000-2015	-	10	Random Forest	76
GLAD GLC_LUC	2022	Landsat composite	30	Глобальная	2000-2020	-	5 + подклассы	Decision Tree, CNN, Regression Models	85
GLAD GLCLU	2022	Landsat composite	30	Глобальная	2019	-	14	Bagging Decision Tree Ensembles, U-Net CNN	78
GLC_FCS30D	2023	Landsat composite	30	Глобальная	1985-2022	1 год	35	Spatiotemporal Classification (Temporal- Consistency Optimization)	81
SBTN Natural Lands Map	2024	Sentinel and Landsat composites	30	Глобальная	2020	-	11	Series of Overlays and Decision Rules	91


Обзор работ

Данные детального пространственного разрешения (10 м)

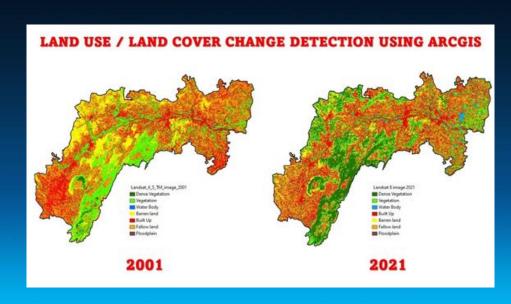
GlobeLandCover10 (FROM-GLC10)

Department of Earth System Science (Tsinghua University, China), 2017


- Растительный покров Земли с ПР 10 м на основе Sentinel-2
- Классификация 10 основных типов РП
- Опубликован в 2017 г. за 2015 г., пока единственный экземпляр, но планируются ежегодные обновления
- Универсальный метод классификации на основе глубокого обучения

Dynamic World

World Resources Institute, Google, 2020

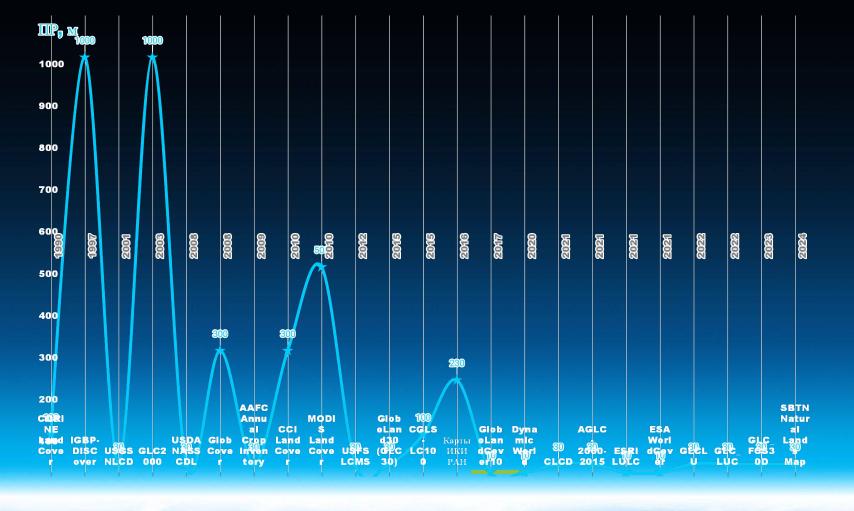

- Данные о растительном покрове планеты в режиме реального времени (начиная с 2015 года)
- Бесплатное пользование с помощью облачной платформы Earth Engine
- На основе Sentinel-2, разрешение 10 м
- 9 классов растительного покрова
- Временной ансамбль модели CNN с глубоким обучением
- Предоставляет вероятности классов, показывает неопределенность

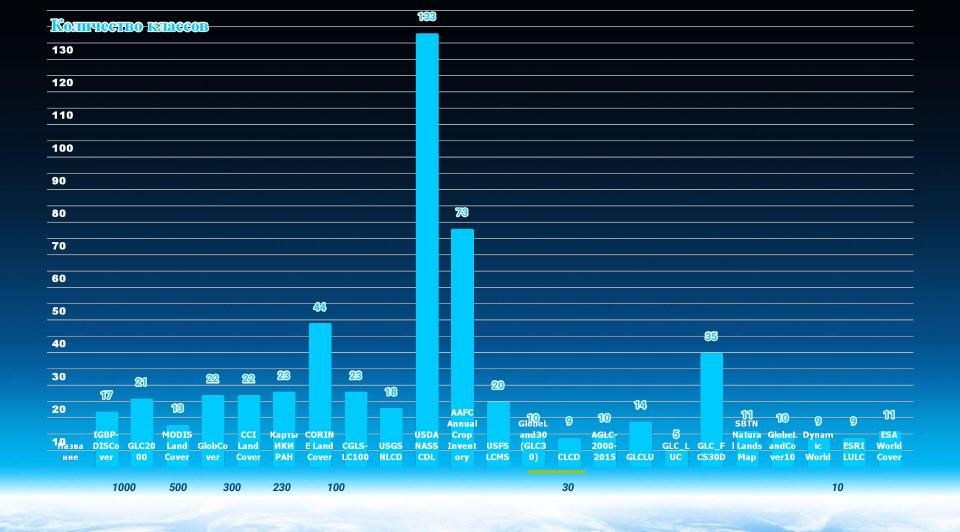
ESRI Land Use Land Cover

Impact Observatory, Microsoft, Esri, 2021

- Глобальный растительный покров, созданный в 2020 г. и ежегодно обновляемый
- Коммерческий продукт, доступный бесплатно через ArcGIS Living Atlas (полная интеграция с платформой ArcGIS)
- Спутниковые снимки Sentinel-2 (10 м)
- 9 классов растительного покрова
- Модель свёрточных нейронных сетей для глубокого обучения классификации

ESA WorldCover


European Space Agency, 2021


- Земной покров планеты, данные за 2020, 2021 годы
- Используются снимки Sentinel-1 (радарные) и Sentinel-2 (оптические), пространственное разрешение: 10 м
- 11 классов растительного покрова
- В свободном доступе
- Метод gradient boosting decision tree (CatBoost)

Название	Год издания	Система Д33	ПР, м	Территория	Временной период	Обновл. (период.)	Кол-во классов	Модель	Точность,
FROM-GLC10	2017	Sentinel-2	10	Глобальная	2015	-	10	Stable Classification with Limited Global Sample	73
Dynamic World	2020	Sentinel-2	10	Глобальная	2015-2025	2-5 дней	9	Fully Convolutional Neural Network	74
ESRI LULC	2021	Sentinel-2	10	Глобальная	2017-2024	1 год	9	Convolutional Neural Network - UNet	75
ESA WorldCover	2021	Sentinel-1,2	10	Глобальная	2020-2021	-	11	Gradient Boosting Decision Tree (CatBoost)	77

Аналитика

Ср. точность, % 90 85 85 80 70 67 60 50 40 30 20

GlobeL

GLC20 GlobCo NASS Invent Land Land USFS CGLS (GLC3 MKM andCo ic

and30 Карты Globel Dynam

CDL ory Cover Cover LCMS LC100 0) PAH ver10 World CLCD 2015 LULC Cover GLCLU UC CS30D Map

SBTN

Natura

GLC L GLC F | Lands

ESA

2000- ESRI World

AGLC-

AAFC Annual

USDA Crop MODIS CCI

10

CORIN IGBP-

ние Cover ver NLCD

Назва E Land DISCo USGS

Заключение

В ходе исследования были проанализированы продукты ландшафтного картографирования на основе данных ДЗЗ, с акцентом на глобальные и региональные решения, сопоставимые с Россией. Рассматривались классы ландшафтного покрова и типы землепользования, а также возможность применения различных алгоритмов машинного обучения, актуальность и обновляемость данных.

Подводя итог, можно сделать следующие выводы:

- Многие наборы данных начали формироваться в 1990-х годах, однако их активное развитие произошло в первое десятилетие XXI века. Была тенденция на уменьшение пространственного разрешения и увеличение территориального охвата. Начиная с 2010-х годов, акцент был сделан на применение более точных моделей и использование усовершенствованных методов и алгоритмов.
- Множество современных тематических продуктов содержит небольшое число классов (10-20). К основным относятся пахотные земли, леса, луга, кустарники, водно-болотные угодья, водоёмы, тундра, искусственные поверхности, голая земля, ледники и постоянный снег.

Заключение

Для нашей задачи существующие решения не подходят по нескольким причинам:

- Необходимо выделить всего 6 основных классов.
- Исследование проводится на данных высокого пространственного разрешения для России, что требует учета специфики данных и высокой точности.
- Нет универсальной модели машинного обучения и отсутствуют четкие технические характеристики алгоритмов для их воспроизведения, что заставляет разрабатывать и обучать собственный метод.

Таким образом, для решения поставленной задачи необходимо самостоятельно освоить методологию создания карт землепользования, опираясь на существующий мировой опыт и обзор.

Готовы ответить на ваши вопросы!

Мятлев А.А: +7 (903) 735-73-53 | <u>aamyat@mail.ru</u> Колобахин М.Ю: +7 (996) 623-29-00 | <u>ursus.lore@gmail.com</u> Кашницкий А.В.: <u>kashnizky@gmail.com</u>

МГУ имени М.В.Ломоносова, 2025